EULfedora Documentation
Release 1.4.0

Emory University Libraries

February 16, 2016

Contents

1 Contents 3
1.1 Creating a simple Django app for Fedora Commons repository content 3
1.2 Example USes i i e e e e e e e e e e e 15
1.3 eulfedora — Python objects to interact with the Fedora Commons repository 15
14 Scripts . . . o e e 35
1.5 Change & Version Information 36
1.6 EULFedora e 41
2 Indices and tables 43

Python Module Index 45

EULfedora Documentation, Release 1.4.0

EULfedora is an extensible library for creating and managing digital objects in a Fedora Commons repository. It
eases mapping Fedora digital object types to Python classes along with ingesting, managing, and searching reposited
content. Its builtin datastream abstractions include idiomatic Python access to XML and RDF datastreams. They’re
also extensible, allowing applications to define other datastream types as needed.

The library contains extra integration for Django apps, though the core repository functionality is framework-agnostic.

Contents 1

http://fedora-commons.org/

EULfedora Documentation, Release 1.4.0

2 Contents

CHAPTER 1

Contents

1.1 Creating a simple Django app for Fedora Commons repository
content

This is a tutorial to walk you through using EULfedora with Django to build a simple interface to the Fedora-Commons
repository for uploading files, viewing uploaded files in the repository, editing Dublin Core metadata, and searching
content in the repository.

This tutorial assumes that you have an installation of the Fedora Commons repository available to interact with. You
should have some familiarity with Python and Django (at the very least, you should have worked through the Django
Tutorial). You should also have some familiarity with the Fedora Commons Repository and a basic understanding of
objects and content models in Fedora.

We will use pip to install EULfedora and its dependencies; on some platforms (most notably, in Windows), you may
need to install some of the python dependencies manually.

1.1.1 Create a new Django project and setup eulfedora

Use pip toinstall the eul fedora library and its dependencies. For this tutorial, we’ll use the latest released version:

‘$ pip install eulfedora

This command should install EULfedora and its Python dependencies.

We’re going to make use of a few items in eulcommon, so let’s install that now too:

‘$ pip install eulcommon

We’ll use Django, a popular web framework, for the web components of this tutorial:

\s pip install django==1.8.3

Note: You are free to use latest version of django. But this tutorial is updated using django v1.8.3.

Now, let’s go ahead and create a new Django project. We’ll call it simplerepo:

$ django-admin.py startproject simplerepo

Go ahead and do some minimal configuration in your django settings. For simplicity, you can use a sqlite database for
this tutorial (in fact, we won’t make much use of this database).

http://www.fedora-commons.org/
http://docs.djangoproject.com/en/1.2/intro/tutorial01/
http://docs.djangoproject.com/en/1.2/intro/tutorial01/
http://www.pip-installer.org/en/latest/index.html
http://www.djangoproject.org/

EULfedora Documentation, Release 1.4.0

In addition to the standard Django settings, add eul fedora to your INSTALLED_APPS and add Fedora connection
configurations to your settings.py so that the eul fedora Repository object can automatically connect to
your configured Fedora repository:

Fedora Repository settings

FEDORA_ROOT = 'https://localhost:8543/fedora/"
FEDORA_USER = 'fedoraAdmin'

FEDORA_PASSWORD = 'fedoraAdmin'
FEDORA_PIDSPACE = 'simplerepo'

Since we’re planning to upload content into Fedora, make sure you are using a fedora user account that has permission
to upload, ingest, and modify content.

1.1.2 Create a model for your Fedora object

Before we can upload any content, we need to create an object to represent how we want to store that data in Fedora.
Let’s create a new Django app where we will create this model and associated views:

$ python manage.py startapp repo

In repo/models. py, create a class that extends DigitalOb ject:

from eulfedora.models import DigitalObject, FileDatastream

class FileObject (DigitalObiject) :
FILE_CONTENT_MODEL = 'info:fedora/genrepo:File-1.0"
CONTENT_MODELS = [FILE_CONTENT_MODEL]
file = FileDatastream("FILE", "Binary datastream", defaults={
'versionable': True,

1)

What we’re doing here extending the default DigitalObject, which gives us Dublin Core and RELS-EXT datas-
tream mappings for free, since those are part of every Fedora object. In addition, we’re defining a custom datastream
that we will use to store the binary files that we’re going to upload for ingest into Fedora. This configures a versionable
FileDatastream with a datastream id of FILE and a default datastream label of Binary datastream. We
could also set a default mimetype here, if we wanted.

Let’s inspect our new model object in the Django console for a moment:

$ python manage.py shell

The easiest way to initialize a new object is to use the Repository object get_object method, which can also be
used to access existing Fedora objects. Using the Repository object allows us to seamlessly pass along the Fedora
connection configuration that the Repository object picks up from your django settings.py:

>>> from eulfedora.server import Repository
>>> from simplerepo.repo.models import FileObject

initialize a connection to the configured Fedora repository instance
>>> repo = Repository()

create a new FileObject instance

>>> obj = repo.get_object (type=FileObject)
this is an uningested object; it will get the default type of generated pid when we sg3
>>> 0obj

<FileObject (generated pid; uningested)>

every DigitalObject has Dublin Core

4 Chapter 1. Contents

ve it

EULfedora Documentation, Release 1.4.0

>>> obj.dc

<eulfedora.models.XmlDatastreamObject object at Oxab6fdec>

dc.content is where you access and update the actual content of the datastream

>>> obj.dc.content

<eulxml.xmlmap.dc.DublinCore object at 0xa568lec>

print out the content of the DC datastream - nothing there (yet)

>>> print obj.dc.content.serialize (pretty=True)

<oai_dc:dc xmlns:oai_dc="http://www.openarchives.org/0OAI/2.0/0ai_dc/" xmlns:dc="http://g

every DigitalObject also gets rels_ext for free

>>> obj.rels_ext

<eulfedora.models.RdfDatastreamObject object at 0xa56866c>

this is an RDF datastream, so the content uses rdflib instead of :mod: eulxml.xmlmap’

>>> obj.rels_ext.content

<Graph identifier=omYiNhtwO (<class 'rdflib.graph.Graph'>)>

print out the content of the rels_ext datastream

notice that it has a content-model relation defined based on our class definition

>>> print obj.rels_ext.content.serialize (pretty=True)

<?xml version="1.0" encoding="UTF-8"?>

<rdf :RDF
xmlns: fedora-model="info:fedora/fedora-system:def/model#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

>
<rdf:Description rdf:about="info:fedora/TEMP:DUMMY_PID">
<fedora-model:hasModel rdf:resource="info:fedora/genrepo:File-1.0"/>
</rdf:Description>
</rdf :RDF>

our FileObject also has a custom file datastream, but there's no content yet
>>> obj.file
<eulfedora.models.FileDatastreamObject object at Oxab56ffac>

save the object to Fedora
>>> obj.save ()

our object now has a pid that was automatically generated by Fedora
>>> obj.pid

'simplerepo:1’

the object also has information about when it was created, modified, etc
>>> obj.created

datetime.datetime (2011, 3, 16, 19, 22, 46, 317000, tzinfo=tzutc())
>>> print obj.created

2011-03-16 19:22:46.317000+00:00

datastreams have this kind of information as well

>>> print obj.dc.mimetype

text/xml

>>> print obj.dc.created

2011-03-16 19:22:46.384000+00:00

we can modify the content and save the changes
>>> obj.dc.content.title = 'My SimpleRepo test object'
>>> obj.save()

We’ve defined a FileObject with a custom content model, but we haven’t created the content model object in Fedora
yet. For simple content models, we can do this with a custom django manage.py command. Run it in verbose mode
so you can more details about what it is doing:

1.1. Creating a simple Django app for Fedora Commons repository content 5

url.org/dc/e

EULfedora Documentation, Release 1.4.0

$ python manage.py syncrepo -v 2

You should see some output indicating that content models were generated for the class you just defined.

This command was is analogous to the Django syncdb command. It looks through your models for classes that
extend DigitalObject, and when it finds content models defined that it can generate, which don’t already exist in the
configured repository, it will generate them and ingest them into Fedora. It can also be used to load initial objects by
way of simple XML filters.

1.1.3 Create a view to upload content

So, we have a custom DigitalObject defined. Let’s do something with it now.

Display an upload form

We haven’t defined any url patterns yet, so let’s create a urls . py for our repo app and hook that into the main project
urls. Create repo/urls.py with this content:

from django.conf.urls.defaults import patterns, url
from simplerepo.repo import views

urlpatterns = patterns('',
url (r'“upload/$', views.upload, name='upload'),

)

Then include that in your project urls.py:

VAT

url (r include ('repo.urls')),

Now, let’s define a simple upload form and a view method to correspond to that url. First, for the form, create a file
named repo/forms . py and add the following:

from django import forms

class UploadForm(forms.Form) :
label = forms.CharField(max_length=255, # fedora label maxes out at 255 characters
help_text='Preliminary title for the new object. 255 characters max.')
file = forms.FileField()

The minimum we need to create a new FileObject in Fedora is a file to ingest and a label for the object in Fedora.
We’re could actually make the label optional here, because we could use the file name as a preliminary label, but for
simplicity let’s require it.

Now, define an upload view to use this form. For now, we’re just going to display the form on GET; we’ll add the form
processing in a moment. Edit repo/views.py and add:

from django.shortcuts import render
from simplerepo.repo.forms import UploadForm

def upload(request) :
if request.method == 'GET':
form = UploadForm()

return render (request, 'repo/upload.html',
{'form"': form})

6 Chapter 1. Contents

EULfedora Documentation, Release 1.4.0

But we still need a template to display our form. Create a template directory and add it to your TEMPLATES configu-
ration in settings.py:

TEMPLATES = [
{

'DIRS': [os.path.join(BASE_DIR, 'templates')], # for example

Create a repo directory inside your template directory, and then create upload.html inside that directory and give
it this content:

<form method="post" enctype="multipart/form-data">{% csrf_ token ¢}
{{ form.as_p }}
<input type="submit" value="Submit"/>

</form>

Let’s start the django server and make sure everything is working so far. Start the server:

$ python manage.py runserver

Then load http://localhost:8000/upload/ in your Web browser. You should see a simple upload form with the two fields
defined.

Process the upload

Ok, but our view doesn’t do anything yet when you submit the web form. Let’s add some logic to process the form. We
need to import the Repository and FileObject classes and use the posted form data to initialize and save a new object,
rather like what we did earlier when we were investigating FileObject in the console. Modify your repo/views.py
so it looks like this:

from django.shortcuts import render_to_response
from django.template import RequestContext

from eulfedora.server import Repository

from simplerepo.repo.forms import UploadForm
from simplerepo.repo.models import FileObject

def upload(request) :
obj = None
if request.method == 'POST':
form = UploadForm(request.POST, request.FILES)
if form.is_valid():
initialize a connection to the repository and create a new FileObject
repo = Repository()
obj = repo.get_object (type=FileObject)
set the file datastream content to use the django UploadedFile object
obj.file.content = request.FILES['file']
use the browser-supplied mimetype for now, even though we know this is ung
obj.file.mimetype = request.FILES['file'].content_type
let's store the original file name as the datastream label
obj.file.label = request.FILES['file'].name
set the initial object label from the form as the object label and the dc
obj.label = form.cleaned_datal['label']
obj.dc.content.title = form.cleaned_datal['label']
obj.save ()

1.1. Creating a simple Django app for Fedora Commons repository content 7

eliable

title

http://localhost:8000/upload/

EULfedora Documentation, Release 1.4.0

re—-init an empty upload form for additional uploads
form = UploadForm()

elif request.method == 'GET':
form = UploadForm()

return render (request, 'repo/upload.html', {'form': form, 'obj': obj})

When content is posted to this view, we’re binding our form to the request data and, when the form is valid, creating a
new FileObject and initializing it with the label and file that were posted, and saving it. The view is now passing that
object to the template, so if it is defined that should mean we’ve successfully ingested content into Fedora. Let’s update
our template to show something if that is defined. Add this to repo/upload.html before the form is displayed:

% if obj %}
<p>Successfully ingested {{ obj.label }} as {{ obj.pid }}.</p>
<hr/>
{# re—-display the form to allow additional uploads #}
<p>Upload another file?</p>
{% endif %)

Go back to the upload page in your web browser. Go ahead and enter a label, select a file, and submit the form. If
all goes well, you should see a the message we added to the template for successful ingest, along with the pid of the
object you just created.

1.1.4 Display uploaded content

Now we have a way to get content in Fedora, but we don’t have any way to get it back out. Let’s build a display
method that will allow us to view the object and its metadata.

Object display view

Add a new url for a single-object view to your urlpatterns in repo/urls.py:

‘url(r'Aobjects/(?P<pid>[“/]+)/$', views.display, name='display'),

Then define a simple view method that takes a pid in repo/views.py:

def display(request, pid):
repo = Repository ()
obj = repo.get_object (pid, type=FileObiject)
return render (request, 'repo/display.html', {'obj': obj})

For now, we’re going to assume the object is the type of object we expect and that we have permission to access it in
Fedora; we can add error handling for those cases a bit later.

We still need a template to display something. Create a new file called repo/display.html in your templates
directory, and then add some code to output some information from the object:

<hl>{{ obj.label }}</hl>
<table>
<tr><th>pid:</th><td> {{ obj.pid }}</td></tr>
{% with obj.dc.content as dc %}
<tr><th>title:</th><td>{{ dc.title }}</td></tr>
<tr><th>creator:</th><td>{{ creator }j</td></tr>

<tr><th>date:</th><td>{{ dc.dea
{% endwith %}
</table>

ce pi</td></tr>

8 Chapter 1. Contents

EULfedora Documentation, Release 1.4.0

We’re just using a simple table layout for now, but of course you can display this object information anyway you like.
We’re just starting with a few of the Dublin Core fields for now, since most of them don’t have any content yet.

Go ahead and take a look at the object you created before using the upload form. If you used the
simplerepo PIDSPACE configured above, then the the first item you uploaded should now be viewable at
http://localhost:8000/objects/simplerepo:1/.

You might notice that we’re displaying the text ‘None’ for creator and date. This is because those fields aren’t present
at all yet in our object Dublin Core, and eulxml . xmlmap fields distinguish between an empty XML field and one
that is not-present at all by using the empty string and None respectively. Still, that doesn’t look great, so let’s adjust
our template a little bit:

<tr><th>creator:</th><td>{{ dc.creator|default:'' }}</td></tr>
<tr><th>date:</th><td>{{ dc.date|default:'"' }}</td></tr>

We actually have more information about this object than we’re currently displaying, so let’s add a few more things to
our object display template. The object has information about when it was created and when it was last modified, so
let’s add a line after the object label:

<p>Uploaded at {{ obj.created }}; last modified {{ obj.modified }}.</p>

These fields are actually Python datetime objects, so we can use Django template filters to display then a bit more
nicely. Try modifying the line we just added:

<p>Uploaded at {{ obj.created }}; last modified {{ obj.modified }}
({{ obj.modified|timesince }} ago) .</p>

It’s pretty easy to display the Dublin Core datastream content as XML too. This may not be something you’d want
to expose to regular users, but it may be helpful as we develop the site. Add a few more lines at the end of your
repo/display.html template:

<hr/>
<pre>{{ obj.dc.content.serialize }}</pre>

You could do this with the RELS-EXT just as easily (or basically any XML or RDF datastream), although it may not
be as valuable for now, since we’re not going to be modifying the RELS-EXST just yet.

So far, we’ve got information about the object and the Dublin Core displaying, but nothing about the file that we
uploaded to create this object. Let’s add a bit more to our template:

<p>{{ obj.file.label }} ({{ obj.file.info.size|filesizeformat }},
{{ obj.file.mimetype }})</p>

Remember that in our upload view method we set the file datastream label and mimetype based on the file that was
uploaded from the web form. Those are stored in Fedora as part of the datastream information, along with some other
things that Fedora calculates for us, like the size of the content.

Download File datastream

Now we’re displaying information about the file, but we don’t actually have a way to get the file back out of Fedora
yet. Let’s add another view.

Add another line to your url patterns in repo/urls.py:

url (r'"objects/ (?P<pid>["/]+)/file/S$', views.file, name='download'),

And then update repo/views . py to define the new view method. First, we need to add a new import:

1.1. Creating a simple Django app for Fedora Commons repository content 9

http://localhost:8000/objects/simplerepo:1/
http://eulxml.readthedocs.org/en/latest/xmlmap.html#module-eulxml.xmlmap

EULfedora Documentation, Release 1.4.0

from eulfedora.views import raw_datastream

eulfedora.views.raw_datastream() is a generic view method that can be used for displaying datastream
content from fedora objects. In some cases you may be able to use raw_datastream () directly (e.g., it might be
useful for displaying XML datastreams), but in this case we want to add an extra header to indicate that the content
should be downloaded. Add this method to repo/views.py:

def file(request, pid):

dsid = 'FILE'
extra_headers = {
'Content-Disposition': "attachment; filename=%s.pdf" % pid,

}

return raw_datastream(request, pid, dsid, type=FileObject, headers=extra_headers)

We’ve defined a content disposition header so the user will be prompted to save the response with a filename based on
the pid do the object in fedora. The raw_datastream () method will add a few additional response headers based
on the datastream information from Fedora. Let’s link this in from our object display page so we can try it out. Edit
your repo/display.html template and turn the original filename into a link:

{{ obj.file.label }}

Now, try it out! You should be able to download the file you originally uploaded.

But, hang on— you may have noticed, there are a couple of details hard-coded in our download view that really
shouldn’t be. What if the file you uploaded wasn’t a PDF? What if we decide we want to use a different datastream
ID? Let’s revise our view method a bit:

def file(request, pid):
dsid = FileObject.file.id

repo = Repository()
obj = repo.get_object (pid, type=FileObiject)
extra_headers = {
'Content-Disposition': "attachment; filename=%¢s" % obj.file.label,

}

return raw_datastream(request, pid, dsid, type=FileObject, headers=extra_headers)

We can get the ID for the file datastream directly from the Fi IeDat ast ream object on our FileObject class. And in
our upload view we set the original file name as our datastream label, so we’ll go ahead and use that as the download
name.

1.1.5 Edit Fedora content

So far, we can get content into Fedora and we can get it back out. Now, how do we modify it? Let’s build an edit form
& a view that we can use to update the Dublin Core metadata.

XmlObjectForm for Dublin Core

We're going to create an eulxml.forms.XmlObjectForm instance for editing
eulxml.xmlmap.dc.DublinCore. XmlObjectForm is roughly analogous to Django’s ModelForm,
except in place of a Django Model we have an Xm10b ject that we want to make editable.

First, add some new imports to repo/forms.py:

from eulxml.xmlmap.dc import DublinCore
from eulxml.forms import XmlObjectForm

Then we can define our new edit form:

10 Chapter 1. Contents

http://eulxml.readthedocs.org/en/latest/forms.html#eulxml.forms.XmlObjectForm
http://eulxml.readthedocs.org/en/latest/xmlmap/dc.html#eulxml.xmlmap.dc.DublinCore
http://eulxml.readthedocs.org/en/latest/forms.html#eulxml.forms.XmlObjectForm
http://django.readthedocs.org/en/latest/topics/forms/modelforms.html#django.forms.ModelForm
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject

EULfedora Documentation, Release 1.4.0

class DublinCoreEditForm (XmlObjectForm) :
class Meta:
model = DublinCore
fields = ['title', 'creator', 'date']

We’ll start simple, with just the three fields we’re currently displaying on our object display page. This code cre-
ates a custom XmlObjectForm with a model of (which for us is an instance of Xm10Object) DublinCore.
Xm1lObjectForm knows how to look at the model object and figure out how to generate form fields that correspond
to the xml fields. By adding a list of fields, we tell XmlObjectForm to only build form fields for these attributes of our
model.

Now we need a view and a template to display our new form. Add another url to repo/urls.py:

’url(r'Aobjects/(?P<pid>[A/]+)/edit/$', 'edit', name='edit'),

And then define the corresponding method in repo/views.py. We need to import our new form:

’from repo.forms import DublinCoreEditForm

Then, use it in a view method. For now, we’ll just instantiate the form, bind it to our content, and pass it to a template:

def edit (request, pid):
repo = Repository ()
obj = repo.get_object (pid, type=FileObject)
form = DublinCoreEditForm(instance=obj.dc.content)
return render (request, 'repo/edit.html', {'form': form, 'obj': obj})

We have to instantiate our object, and then pass in the content of the DC datastream as the instance to our model. Our
XmlObjectForm is using Dubl inCore as its model, and obj.dc.content is an instance of DublinCore with data
loaded from Fedora.

Create a new file called repo/edit .html in your templates directory and add a little bit of code to display the
form:

<hl>Edit {{ ob7j.label }}</hl>
<form method="post">{% csrf_ token %}

<table>{{ form.as_table }}</table>
<input type="submit" value="Save"/>
</form>

Load the edit page for that first item you uploaded: http://localhost:8000/objects/simplerepo: 1/edit/. You should see a
form with the three fields that we listed. Let’s modify our view method so it will do something when we submit the
form:

def edit (request, pid):
repo = Repository ()
obj = repo.get_object (pid, type=FileObiject)
if request.method == 'POST':
form = DublinCoreEditForm(request.POST, instance=obj.dc.content)
if form.is_valid():
form.update_instance ()

obj.save ()
elif request.method == 'GET':
form = DublinCoreEditForm(instance=obj.dc.content)
return render (request, 'repo/edit.html', {'form': form, 'obj': obij})

When the data is posted to this view, we’re binding our form to the posted data and the XmlObject instance. If it’s
valid, then we can call the update_instance () method, which actually updates the Xm10b ject that is attached
to our DC datastream object based on the form data that was posted to the view. When we save the object, the

1.1. Creating a simple Django app for Fedora Commons repository content 11

http://eulxml.readthedocs.org/en/latest/forms.html#eulxml.forms.XmlObjectForm
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap/dc.html#eulxml.xmlmap.dc.DublinCore
http://eulxml.readthedocs.org/en/latest/forms.html#eulxml.forms.XmlObjectForm
http://eulxml.readthedocs.org/en/latest/xmlmap/dc.html#eulxml.xmlmap.dc.DublinCore
http://localhost:8000/objects/simplerepo:1/edit/
http://eulxml.readthedocs.org/en/latest/forms.html#eulxml.forms.XmlObjectForm.update_instance
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject

EULfedora Documentation, Release 1.4.0

DigitalObject class detects that the dc.content has been modified and will make the necessary API calls to
update that content in Fedora.

Note: It may not matter too much in this case, since we are working with simple Dublin Core XML, but it’s probably
worth noting that the form is_valid () check actually includes XML Schema validation on Xm10b ject instances
that have a schema defined. In most cases, it should be difficult (if not impossible) to generate invalid XML via an
Xm1lObjectForm; but if you edit the XML manually and introduce something that is not schema-valid, you’ll see
the validation error when you attempt to update that content with Xm10ObjectForm.

Try entering some text in your form and submitting the data. It should update your object in Fedora with the changes
you made. However, our interface isn’t very user friendly right now. Let’s adjust the edit view to redirect the user to
the object display after changes are saved.

We’ll need some additional imports:

from django.core.urlresolvers import reverse
from eulcommon.djangoextras.http import HttpResponseSeeOtherRedirect

Note: HttpResponseSeeOtherRedirect is a custom subclass of django.http.HttpResponse analo-
gous to HttpResponseRedirect or HttpResponsePermanentRedirect, but it returns a See Other redi-
rect (HTTP status code 303).

After the object .save () call in the edit view method, add this:

‘return HttpResponseSeeOtherRedirect (reverse('display', args=[obj.pid]))

Now when you make changes to the Dublin Core fields and submit the form, it should redirect you to the object display
page and show the changes you just made.

Right now our edit form only has three fields. Let’s customize it a bit more. First, let’s add all of the Dublin Core
fields. Replace the original list of fields in DublinCoreEditForm with this:

fields = ['title', 'creator', 'contributor', 'date', 'subject',
'description', 'relation', 'coverage', 'source', 'publisher',
'rights', 'language', 'type', 'format', 'identifier']

Right now all of those are getting displayed as text inputs, but we might want to treat some of them a bit differently.
Let’s customize some of the widgets:

widgets = {
'description': forms.Textarea,
'date': SelectDateWidget,

}

You’ll also need to add another import line so you can use SelectDateWidget:

from django.forms.extras.widgets import SelectDateWidget

Reload the object edit page in your browser. You should see all of the Dublin Core fields we added, and the custom
widgets for description and date. Go ahead and fill in some more fields and save your changes.

While we’re adding fields, let’s change our display template so that we can see any Dublin Core fields that are present,
not just those first three we started with. Replace the title, creator, and date lines in your repo/display.html
template with this:

12 Chapter 1. Contents

http://eulxml.readthedocs.org/en/latest/forms.html#eulxml.forms.XmlObjectForm.is_valid
http://www.w3.org/XML/Schema
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/forms.html#eulxml.forms.XmlObjectForm
http://eulxml.readthedocs.org/en/latest/forms.html#eulxml.forms.XmlObjectForm
http://django.readthedocs.org/en/latest/ref/request-response.html#django.http.HttpResponse
http://django.readthedocs.org/en/latest/ref/request-response.html#django.http.HttpResponseRedirect
http://django.readthedocs.org/en/latest/ref/request-response.html#django.http.HttpResponsePermanentRedirect
http://tools.ietf.org/html/rfc2616#section-10.3.4

EULfedora Documentation, Release 1.4.0

{% for el in dc.elements %}
<tr><th>{{ el.name }}:</th><td>{{el}j}</td</tr>
{% endfor %}

And then add an extra parameter ‘dc’ to render_to_response in display function:

def display(request, pid):
repo = Repository ()
obj = repo.get_object (pid, type=FileObject)
return render_to_response('display.html', {'obj': obj, 'pid': pid,
'dec': obj.dc.content})

Now when you load the object page in your browser, you should see all of the fields that you entered data for on the
edit page.

1.1.6 Search Fedora content
So far, we’ve just been working with the objects we uploaded, where we know the PID of the object we want to view

or edit. But how do we come back and find that again later? Or find other content that someone else created? Let’s
build a simple search to find objects in Fedora.

Note: For this tutorial, we’ll us the Fedora findObjects API method. This search is quite limited, and for a production
system, you’ll probably want to use something more powerful, such Solr, but findObjects is enough to get you started.

The built-in fedora search can either do a keyword search across all indexed fields or a fielded search. For the purposes
of this tutorial, a simple keyword search will accomplish what we need. Let’s create a simple form with one input for
keyword search terms. Add the following to repo/forms.py:

class SearchForm(forms.Form) :
keyword = forms.CharField()

Add a search url to repo/urls.py:

url (r'”"search/$', views.search, name='search'),

Then import the new form into repo/views.py and define the view that will actually do the searching:

from repo.forms import SearchForm

def search(request):
objects = None
if request.method == 'POST':
form = SearchForm(request.POST)
if form.is_valid():
repo = Repository()

objects = list (repo.find_objects (form.cleaned_datal'keyword'], type=FileObiject))

elif request.method == 'GET':
form = SearchForm{()
return render (request, 'repo/search.html', {'form': form, 'objects': objects})

As before, on a GET request we simple pass the form to the template for display. When the request is a POST with
valid search data, we’re going to instantiate our Repository objectand call the find_objects () method. Since
we’re just doing a term search, we can just pass in the keywords from the form. If you wanted to do a fielded search,
you could build a keyword-argument style list of fields and search terms instead. We’re telling find_objects () to

1.1. Creating a simple Django app for Fedora Commons repository content 13

EULfedora Documentation, Release 1.4.0

return everything it finds as an instance of our FileObject class for now, even though that is an over-simplification
and in searching across all content in the Fedora repository we may well find other kinds of content.

Let’s create a search template to display the search form and search results. Create repo/search.html in your
templates directory and add this:

<hl>Search for objects</hl>
<form method="post">{% csrf_ token %)}

{{ form.as_p }}
<input type="submit" value="Submit"/>
</form>
% if objects %}
<hr/>
% for obj in objects %}

<p>{{ obj.label }}</p>
{% endfor %)}
{%$ endif %}

This template will always display the search form, and if any objects were found, it will list them. Let’s take it for
a whirl! Go to http://localhost:8000/search/ and enter a search term. Try searching for the object labels, any of the
values you entered into the Dublin Core fields that you edited, or if you're using simplerepo for your configured
PIDSPACE, search on simplerepo: = to find the objects you’ve uploaded.

When you are searching across disparate content in the Fedora repository, depending on how you have access config-
ured for that repository, there is a possibility that the search could return an object that the current user doesn’t actually
have permission to view. For efficiency reasons, the DigitalOb ject postpones any Fedora API calls until the last
possibly moment— which means that in our search results, any connection errors will happen in the template instead of
in the view method. Fortunately, eul fedora.templatetags has a template tag to help with that! Let’s rewrite
the search template to use it:

{% load fedora %}
<hl>Search for objects</hl>
<form method="post">{% csrf token ¢}
{{ form.as_p }}
<input type="submit" value="Submit"/>
</form>
% if objects %}
<hr/>
{% for obj in objects %}
{% fedora_access %}
<p>{{ obj.label }}</p>
{% permission_denied %}
<p>You don't have permission to view this object.</p>
{% fedora_failed %)
<p>There was an error accessing fedora.</p>
% end_fedora_access %}
% endfor %}
% endif %)

What we’re doing here is loading the fedora template tag library, and then using fedora_access for each object that
we want to display. That way we can catch any permission or connection errors and display some kind of message to
the user, and still display all the content they have permission to view.

For this template tag to work correctly, you’re also going to have disable template debugging (otherwise, the Django
template debugging will catch the error first). Edit your settings.py and change TEMPLATE_DEBUG to False.

14 Chapter 1. Contents

http://localhost:8000/search/

EULfedora Documentation, Release 1.4.0

1.2 Example Uses

1.2.1 Bulk purging test objects via console

The combination of eulfedora and interactive Python or Django’s shell provides a simple but powerful console
interface to Fedora. For example, if you loaded a bunch of test or demo objects to a test or development Fedora
instance and you wanted to remove them, you could purge them with eul fedora as follows. This example assumes
a django project with Fedora settings configured and eul fedora already installed (see eul fedora. server for
documentation on supported Django settings). First, start up the Django console:

$ python manage.py shell

Inside the Django shell, import Repository and your Django settings to easily initialize a Repository connection
to your configured Fedora (in this example, we’re accessing the repository that is configured for testing):

>>>
>>>
>>>

>>>

from eulfedora.server import Repository

from django.conf import settings

repo = Repository(settings.FEDORA_TEST_ROOT, \
settings.FEDORA_TEST_USER, settings.FEDORA_TEST_PASSWORD)

for o in repo.find_objects(pid__contains='test-obj:x"):
repo.purge_object (o.pid)

This example will find and purge all objects in the test—obj pidspace. Of course, you could easily find objects by
ownerld, title text, or any of the other fields supported by find objects ().

1.3 eulfedora — Python objects to interact with the Fedora Com-

mons repository

1.3.1 eulfedora.models - Fedora models

DigitalObject

class eulfedora.models.DigitalObject (api, pid=None, create=False, default_pidspace=None)

A single digital object in a Fedora respository, with methods and properties to easy creating, accessing, and
updating a Fedora object or any of its component parts, with pre-defined datastream mappings for the standard
Fedora Dublin Core (dc) and RELS-EXT (rels_ext) datastreams.

Note: If you want idiomatic access to other datastreams, consider extending DigitalObject and defining
your own datastreams using XmlDatastream, RdfDatastream,or FileDatastream as appropriate.

OWNER_ID_SEPARATOR = ¢,
Owner ID separator for multiple owners. Should match the OWNER-ID-SEPARATOR configured in
Fedora. For more detail, see https://jira.duraspace.org/browse/FCREPO-82

add_relationship (rel_uri, obj)
Add a new relationship to the RELS-EXT for this object. Calls API_M.addRelationship ().

Example usage:

isMemberOfCollection = 'info:fedora/fedora-system:def/relations—external#isMemy
collection_uri = 'info:fedora/foo:456"
object.add_relationship (isMemberOfCollection, collection_uri)

1.2

Example Uses 15

erOfCollectic

https://jira.duraspace.org/browse/FCREPO-82

EULfedora Documentation, Release 1.4.0

Parameters
* rel_uri — URI for the new relationship

* obj-related object; canbe DigitalObject or string; if string begins with info:fedora/
it will be treated as a resource, otherwise it will be treated as a literal

Return type boolean

audit_trail
Fedora audit trail as an instance of eul fedora.xml.AuditTrail

Note: Since Fedora (as of 3.5) does not make the audit trail available via an API call or as a datastream,
accessing the audit trail requires loading the foxml for the object. If an object has large, versioned XML
datastreams this may be slow.

audit_trail users
A set of all usernames recorded in the audit_trail, if available.

dc
XmlDatastream for the required Fedora DC datastream; datastream content will be automatically
loaded as an instance of eulxml .xmlmap.dc.DublinCore

default_pidspace = None
Default namespace to use when generating new PIDs in get_default_pid () (by default, calls Fedora
getNextPid, which will use Fedora-configured namespace if default_pidspace is not set).

ds_list
Dictionary of all datastreams that belong to this object in Fedora. Key is datastream id, value is an
ObjectDatastream for that datastream.

Only retrieved when requested; cached after first retrieval.
exists
Type bool
True when the object actually exists (and can be accessed by the current user) in Fedora

getDatastreamObject (dsid, dsobj_type=None, as_of_date=None)
Get any datastream on this object as a Datast reamOb ject or add a new datastream. If the datastream
id corresponds to a predefined datastream, the configured object will be returned and the datastream object
will be returned. If type is not specified for an existing datastream, attempts to infer the appropriate
subclass of datastream object to return based on the mimetype (for XML and RELS-EXT).

Note that if you use this method to add new datastreams you should be sure to set all datastream metadata
appropriately for your content (i.e., label, mimetype, control group, etc).

Parameters
¢ dsid - datastream id
* dsobj_type —optional DatastreamOb ject type to be returned

* as_of_date - optional datetime, used to load a historical version of the requested datas-
tream

getDatastreamProfile (dsid, date=None)
Get information about a particular datastream belonging to this object.

Parameters dsid — datastream id

16 Chapter 1. Contents

http://eulxml.readthedocs.org/en/latest/xmlmap/dc.html#eulxml.xmlmap.dc.DublinCore

EULfedora Documentation, Release 1.4.0

Return type DatastreamProfile

getProfile()
Get information about this object (label, owner, date created, etc.).

Return type ObjectProfile

get_default_pid()
Get the next default pid when creating and ingesting a new DigitalObject instance without specifying a pid.
By default, calls ApiFacade.getNextPID () with the configured class default_pidspace (if specified)
as the pid namespace.

If your project requires custom pid logic (e.g., object pids are based on an external pid generator), you
should extend DigitalObject and override this method.

get_models ()
Get a list of content models the object subscribes to.

get_object (pid, type=None)
Initialize and return a new DigitalObject instance from the same repository, passing along the con-
nection credentials in use by the current object. If type is not specified, the current DigitalObject class will
be used.

Parameters
e pid - pid of the object to return
* type — (optional) DigitalObject type to initialize and return

has_model (model)
Check if this object subscribes to the specified content model.

Parameters model — URI for the content model, as a string (currently only accepted in
info:fedora/foo: ### format)

Return type boolean

has_requisite_content_models

Type bool

True when the current object has the expected content models for whatever subclass of DigitalObject
it was initialized as.

index data()
Generate and return a dictionary of default fields to be indexed for searching (e.g., in Solr). Includes
top-level object properties, Content Model URIs, and Dublin Core fields.

This method is intended to be customized and extended in order to easily modify the fields that should
be indexed for any particular type of object in any project; data returned from this method should be
serializable as JSON (the current implementation uses django.utils.simplejson).

This method was designed for use with eul fedora. indexdata.

index_data_descriptive ()
Descriptive data to be included in index_data () output. This implementation includes all Dublin Core
fields, but should be extended or overridden as appropriate for custom DigitalOb ject classes.

index data_relations ()
Standard Fedora relations to be included in 1ndex_data () output. This implementation includes all
standard relations included in the Fedora relations namespace, but should be extended or overridden as
appropriate for custom DigitalObject classes.

1.3.

eulfedora — Python objects to interact with the Fedora Commons repository 17

EULfedora Documentation, Release 1.4.0

ingest_user
Username responsible for ingesting this object into the repository, as recorded in the audit_trail, if
available.

label
object label

label max size =255
maximum label size allowed by fedora

modify_relationship (rel_uri, old_object, new_object)
Modify a relationship from RELS-EXT for this object. As the Fedora API-M does not contain a native
“modifyRelationship”, this method purges an existing one, then adds a new one, pivoting on the predicate.
Calls API_M.purgeRelationship(),API_M.addRelationship ()

Example usage:

predicate = 'info:fedora/fedora-system:def/relations—external#isMemberOfCollection’
old_object = 'info:fedora/foo:456"
new_object = 'info:fedora/foo:789"'

object .modify_relationship (predicate, old_object, new_object)

Parameters
* rel_uri — URI for the existing relationship

* old_object — previous target object for relationship; can be DigitalOb ject or
string; if string begins with info:fedora/ it will be treated as a resource, otherwise it will be
treated as a literal

* new_object —new target object for relationship; can be DigitalOb ject or string; if
string begins with info:fedora/ it will be treated as a resource, otherwise it will be treated
as a literal

Return type boolean
object_xml

Fedora object XML as an instance of FoxmlDigitalObject. (via REST_API.
getObjectXML ()).

owner
object owner

owner _max size =64
maximum owner size allowed by fedora

owners
Read-only list of object owners, separated by the configured OWNER _ID_SEPARATOR, with whitespace
stripped.

pidspace
Fedora pidspace of this object

purge_relationship (rel_uri, obj)
Purge a relationship from RELS-EXT for this object. Calls API_M.purgeRelationship ().

Example usage:

isMemberOfCollection = 'info:fedora/fedora-system:def/relations—external#isMemiberOfCollectic
collection_uri = 'info:fedora/foo:789"
object .purge_relationship (isMemberOfCollection, collection_uri)

18 Chapter 1. Contents

EULfedora Documentation, Release 1.4.0

Parameters
* rel_uri — URI for the existing relationship

* obj-related object; canbe DigitalObject or string; if string begins with info:fedora/
it will be treated as a resource, otherwise it will be treated as a literal

Return type boolean
rels_ext
RdfDatastream for the standard Fedora RELS-EXT datastream

risearch
Instance of eul fedora.api.Resourcelndex, with the same root url and credentials

save (logMessage=None)
Save to Fedora any parts of this object that have been modified (including object profile attributes such as
label, owner, or state, and any changes to datastream content or datastream properties). If a failure
occurs at any point on saving any of the parts of the object, will back out any changes that have been
made and raise a DigitalObjectSaveFailure with information about where the failure occurred
and whether or not it was recoverable.

If the object is new, ingest it. If object profile information has been modified before saving, this data is
used in the ingest. Datastreams are initialized to sensible defaults: XML objects are created using their
default constructor, and RDF graphs start empty. If they’re updated before saving then those updates are
included in the initial version. Datastream profile information is initialized from defaults specified in the
Datastream declaration, though it too can be overridden prior to the initial save.

state
object state (Active/Inactive/Deleted)

uri
Fedora URI for this object (info: fedora/foo: ##4# form of object pid)

uriref
Fedora URI for this object, as an rdf1ib.URIRef URI object

Custom Exception

class eul fedora.models.DigitalObjectSaveFailure (pid, failure, to_be_saved, saved, cleaned)
Custom exception class for when a save error occurs part-way through saving an instance of DigitalOb ject.
This exception should contain enough information to determine where the save failed, and whether or not any
changes saved before the failure were successfully rolled back.

These properties are available:
* obj_pid - pid of the DigitalOb ject instance that failed to save
* failure - string indicating where the failure occurred (either a datastream ID or ‘object profile’)
e to_be_saved - list of datastreams that were modified and should have been saved
* saved - list of datastreams that were successfully saved before failure occurred
* cleaned - list of saved datastreams that were successfully rolled back
* not_cleaned - saved datastreams that were not rolled back

¢ recovered - boolean, True indicates all saved datastreams were rolled back

1.3. eulfedora — Python objects to interact with the Fedora Commons repository 19

EULfedora Documentation, Release 1.4.0

Datastream

Datastream Descriptors

class eul fedora.models.Datastream (id, label, defaults={})

Datastream descriptor to simplify configuration and access to datastreams that belong to a particular

DigitalObject.

When accessed, will initialize a Datast reamOb ject and cache it on the DigitalOb ject that it belongs

to.

Example usage:

class MyDigitalObiject (DigitalObject) :

text = Datastream ("TEXT", "Text content", defaults={'mimetype': 'text/plain'})

All other configuration defaults are passed on to the DatastreamOb ject.

class eul fedora.models.XmlDatastream (id, label, objtype=None, defaults={})
XML-specific version of Datastream. Datastreams are initialized as instances

of

XmlDatastreamObject. An additional, optional parameter objtype is passed to the Datastream

object to configure the type of eulxml .xmlmap.XmlObject that should be used for datastream content.

Example usage:

from eulxml.xmlmap.dc import DublinCore

class MyDigitalObject (DigitalObject) :
extra_dc = XmlDatastream ("EXTRA_DC", "Dublin Core", DublinCore)

my_obj = repo.get_object ("example:1234", type=MyDigitalObject)
my_obj.extra_dc.content.title = "Example object"
my_obj.save (logMessage="automatically setting dc title")

class eul fedora.models.RdfDatastream (id, label, defaults={})

RDF-specific version of Datastream for accessing datastream content as an rdflib RDF graph. Datastreams

are initialized as instances of RdfDatastreamOb ject.

Example usage:

from rdflib import RDFS, Literal

class MyDigitalObiject (DigitalObject) :
extra_rdf = RdfDatastream("EXTRA_RDEF", "an RDF graph of stuff")

my_obj = repo.get_object ("example:4321", type=MyDigitalObject)
my_obj.extra_rdf.content.add((my_obj.uriref, RDFS.comment,

Literal ("This is an example object.")))
my_obj.save (logMessage="automatically setting rdf comment")

class eulfedora.models.FileDatastream (id, label, defaults={})
File-based content version of Datastream. Datastreams are initialized as instances
FileDatastreamOb ject.

of

20 Chapter 1. Contents

http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://pypi.python.org/pypi/rdflib/

EULfedora Documentation, Release 1.4.0

Datastream Objects

class eul fedora.models.DatastreamObject (0bj, id, label, mimetype=None, versionable=False,
state="A’, format=None, control_group="M’,
checksum=None, checksum_type="MD5’,

as_of_date=None)
Object to ease accessing and updating a datastream belonging to a Fedora object. Handles datastream content as

well as datastream profile information. Content and datastream info are only pulled from Fedora when content
and info fields are accessed.

Intended to be used with DigitalObject and intialized via Datastream.
Initialization parameters:
param obj the DigitalOb ject that this datastream belongs to.
param id datastream id
param label default datastream label
param mimetype default datastream mimetype
param versionable default configuration for datastream versioning
param state default configuration for datastream state (default: A [active])
param format default configuration for datastream format URI

param control_group default configuration for datastream control group (default: M [man-
aged))

param checksum default configuration for datastream checksum
param checksum_type default configuration for datastream checksum type (default: MD5)

param as_of_date load a historical version of this datastream as of a particular date time. (Note
that historical datastream versions are for access only, and cannot be saved.)

as_of_date = None
optional datetime for accessing a historical datastream version

content
contents of the datastream; for existing datastreams, content is only pulled from Fedora when first re-
quested, and cached after first access; can be used to set or update datastream contents by means
of text content or a file-like object. For example, if you have a DigitalObject subclass with a
FileDatastreamdefined as image:

with open(filename) as imgfile:
myobj.image.content = imgfile

For an alternate method to set datastream content, see ds_Ilocation.

ds_location = None
Datastream content location: set this attribute to a URI that Fedora can resolve (e.g., http:// or file://)
in order to add or update datastream content from a known, accessible location, rather than posting via
content. If ds_location is set, it takes precedence over content.

get_chunked_content (chunksize=4096)
Generator that returns the datastream content in chunks, so larger datastreams can be used without reading
the entire contents into memory.

history ()
Get history/version information for this datastream and return as an instance of DatastreamHistory.

1.3. eulfedora — Python objects to interact with the Fedora Commons repository 21

http://

EULfedora Documentation, Release 1.4.0

isModified()
Check if either the datastream content or profile fields have changed and should be saved to Fedora.

Return type boolean

label
datastream label

mimetype
datastream mimetype

save (logmessage=None)
Save datastream content and any changed datastream profile information to Fedora.

Return type boolean for success

size
Size of the datastream content

state
datastream state (Active/Inactive/Deleted)

undo_last_save (logMessage=None)
Undo the last change made to the datastream content and profile, effectively reverting to the object state in
Fedora as of the specified timestamp.

For a versioned datastream, this will purge the most recent datastream. For an unversioned datastream, this
will overwrite the last changes with a cached version of any content and/or info pulled from Fedora.

validate_checksum (date=None)
Check if this datastream has a valid checksum in Fedora, by running the
REST_API.compareDatastreamChecksum() API call. Returns a boolean based on the
checksum valid response from Fedora.

Parameters date — (optional) check the datastream validity at a particular date/time (e.g., for
versionable datastreams)

versionable
boolean; indicates if Fedora is configured to version the datastream

class eulfedora.models.XmlDatastreamObject (0bj, id, label, objtype=<class ‘eu-

Ixml.xmlmap.core. XmlObject’>, **kwargs)
Extends DatastreamObject in order to initialize datastream content as an instance of a specified

XmlObject.
See DatastreamOb ject for more details. Has one additional parameter:

Parameters objtype — xml object type to use for datastream content; if not specified, defaults to
XmlObject

class eul fedora.models.RdfDatastreamObject (0obj, id, label, mimetype=None, version-
able=False, state="A’, format=None, con-
trol_group="M, checksum=None, check-

sum_type="MD5’, as_of_date=None)
Extends DatastreamObject in order to initialize datastream content as an rdflib RDF graph.

replace_uri (src, dest)
Replace a uri reference everywhere it appears in the graph with another one. It could appear as the subject,
predicate, or object of a statement, so for each position loop through each statement that uses the reference
in that position, remove the old statement, and add the replacement.

22 Chapter 1. Contents

http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://pypi.python.org/pypi/rdflib/

EULfedora Documentation, Release 1.4.0

class eul fedora.models.FileDatastreamObject (0obj, id, label, mimetype=None, version-
able=False, state="A’, format=None, con-
trol_group="M’, checksum=None, check-
sum_type="MD5’, as_of_date=None)
Extends DatastreamObject in order to allow setting and reading datastream content as a file. To update
contents, set datastream content property to a new file object. For example:

class ImageObject (DigitalObject):
image = FileDatastream('IMAGE', 'image datastream', defaults={
'mimetype': 'image/png'

})

Then, with an instance of ImageObject:

obj.image.content = open('/path/to/my/file'")
obj.save ()

content
contents of the datastream; only pulled from Fedora when accessed, cached after first access

Relations

class eul fedora.models.Relation (relation, type=None, ns_prefix={}, rdf _type=None, re-

lated_name=None, related_order=None)
This descriptor is intended for use with DigitalObject RELS-EXT relations, and provides get, set, and

delete functionality for a single related DigitalObject instance or literal value in the RELS-EXT of an
individual object.

Example use for a related object: a Relation should be initialized with a predicate URI and optionally a
subclass of DigitalOb ject that should be returned:

class Page(DigitalObject) :
volume = Relation(relsext.isConstituentOf, type=Volume)

When a Relation is created with a type that references a DigitalObject subclass, a corresponding
ReverseRelation will automatically be added to the related subclass. For the example above, the fic-
tional Volume class would automatically get a page_set attribute configured with the same URI and a class
of Page. Reverse property names can be customized using the related_name parameter, which is docu-
mented below and follows the basic conventions of Django’s ForeignKey model field (to which Relation
is roughly analogous).

Note: Currently, auto-generated ReverseRelation properties will always be initialized with
multiple=True, since that is the most common pattern for Fedora object relations (one to many). Other
variants may be added later, if and when use cases arise.

Relat ion also supports configuring the RDF type and namespace prefixes that should be used for serialization;
for example:

from rdflib import XSD, URIRef
from rdflib.namespace import Namespace

MYNS = Namespace (URIRef ("http://example.com/ns/2011/my-test-namespace/#"))

class MyObj(DigitalObject) :
total = Relation (MYNS.count, ns_prefix={"my": MYNS}, rdf_type=XSD.int)

1.3. eulfedora — Python objects to interact with the Fedora Commons repository 23

http://django.readthedocs.org/en/latest/ref/models/fields.html#django.db.models.ForeignKey

EULfedora Documentation, Release 1.4.0

This would allow us to access total as an integer on a MyObj object, e.g.:

myobj.total = 3

and when the RELS-EXT is serialized it will use the configured namespace prefix, e.g.:

<rdf:RDF xmlns:my="xmlns:fedora-model=""info:fedora/fedora-system:def/model#”’

xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about=""info:fedora/myobj:1’> <my:count rdf:datatype="http://www.w3.0rg/2001/XMLSchema#i

</rdf:Description>

</rdf:RDF>

Note: If a namespace prefix is not specified, rfd1lib will automatically generate a namespace to produce
valid output, but it may be less readable than a custom namespace.

Initialization options:
Parameters
* relation - the RDF predicate URI as a rdf1ib.URIRef

* type — optional DigitalObject subclass to initialize (for object relations); use
type="self" to specify that the current DigitalObject class should be used (currently
no reverse relation will be created for recursive relations).

* ns_prefix — optional dictionary to configure namespace prefixes to be used for
serialization; key should be the desired prefix, value should be an instance of
rdflib.namespace.Namespace

* rdf_ type — optional rdf type for literal values (passed to rdflib.Literal as the
datatype option)

* related_name - optional name for the auto-generated ReverseRelat ion property,
when the relation is to a subclass of DigitalOb ject; if not specified, the related name
will be classname_set; a value of + indicates no ReverseRelat ion should be cre-
ated

* related_order — optional URI for sorting related objects in the auto-generated
ReverseRelat ion property.

class eul fedora.models.ReverseRelation (relation, type=None, multiple=False, order_by=None)

Descriptor for use with DigitalObject RELS-EXT reverse relations, where the owning object is the RDF
object of the predicate and the related object is the RDF subject. This descriptor will query the Fedora
ResourceIndex for the requested subjects, based on the configured predicate, and return resulting items.

This descriptor only provides read access; there is no functionality for setting or deleting reverse-related objects.

It is recommended to use Relat ion and let the corresponding ReverseRelat ion be automatically gener-
ated for you.

Example use:

class Volume (DigitalObject) :
pages = ReverseRelation(relsext.isConstituentOf, type=Page, multiple=True)

24

Chapter 1. Contents

http://rdflib.readthedocs.org/en/latest/apidocs/rdflib.html#rdflib.namespace.Namespace

EULfedora Documentation, Release 1.4.0

Parameters
* relation — RDF relation to be used for querying to find the items
* type — object type for the related item or items

* multiple — set to true if there multiple related items, which will be returned as a list
(defaults to false)

* order_by — RDF predicate to be used for sorting multiple items (must be available for
query in the Rlsearch, as a property of the items being returned)

1.3.2 eulfedora.xml - Fedora XML objects (for REST API returns)

Currently, this module consists of Xm10b ject wrappers for the XML returned by the REST API, to simplify dealing
with results.
class eulfedora.xml .AuditTrail (node=None, context=None, **kwargs)
Xm1lObject for the Fedora built-in audit trail that is automatically populated from any modifications made to
an object.

records = <eulxml.xmlmap.fields.NodeListField>
list of AuditTrailRecord entries

class eulfedora.xml.AuditTrailRecord (node=None, context=None, **kwargs)
XmlObject for a single audit entry in an AuditTrail.

action = <eulxml.xmlmap.fields.StringField>
the particular action taken, e.g. addDatastream

component = <eulxml.xmlmap.fields.StringField>
the component that was modified, e.g. a datastream ID such as DC or RELS-EXT

date = <eulfedora.xml.FedoraDateField>
date the change was made, as datetime.datetime

id = <eulxml.xmlmap.fields.StringField>
id for this audit trail record

message = <eulxml.xmlmap.fields.StringField>
justification for the change, if any (i.e., log message passed to save method)

process_type = <eulxml.xmlmap.fields.StringField>
type of modification, e.g. Fedora API-M

user = <eulxml.xmlmap.fields.StringField>
the user or account responsible for the change (e.g., fedoraAdmin)

class eul fedora.xml .DatastreamHistory (node=None, context=None, **kwargs)
Xm1lObject for datastream history information returned by REST_API.getDatastreamHistory ().

dsid = <eulxml.xmlmap.fields.StringField>
datastream id

pid = <eulxml.xmlmap.fields.StringField>
pid

versions = <eulxml.xmlmap.fields.NodeListField>
list of DatastreamProfile objects for each version

class eul fedora.xml .DatastreamProfile (node=None, context=None, **kwargs)
Xm1Object for datastream profile information returned by REST_API.getDatastream().

1.3. eulfedora — Python objects to interact with the Fedora Commons repository 25

http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://docs.python.org/library/datetime.html#datetime.datetime
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject

EULfedora Documentation, Release 1.4.0

checksum = <eulxml.xmlmap.fields.StringField>
checksum for current datastream contents

checksum_type = <eulxml.xmlmap.fields.StringField>
type of checksum

checksum_valid = <eulxml.xmlmap.fields.SimpleBooleanField>
Boolean flag indicating if the current checksum is valid. Only present when profile is accessed via
REST_API.compareDatastreamChecksum /()

control_group = <eulxml.xmlmap.fields.StringField>
datastream control group (inline XML, Managed, etc)

created = <eulfedora.xml.FedoraDateField>
date the datastream was created

format = <eulxml.xmlmap.fields.StringField>
format URI for the datastream, if any

label = <eulxml.xmlmap.fields.StringField>
datastream label

mimetype = <eulxml.xmlmap.fields.StringField>
datastream mimetype

size = <eulxml.xmlmap.fields.IntegerField>
integer; size of the datastream content

state = <eulxml.xmlmap.fields.StringField>
datastream state (A/I/D - Active, Inactive, Deleted)

version_id = <eulxml.xmlmap.fields.StringField>
current datastream version id

versionable = <eulxml.xmlmap.fields.SimpleBooleanField>
boolean; indicates whether or not the datastream is currently being versioned

class eul fedora.xml .DsCompositeModel (node=None, context=None, **kwargs)

XmlObject for a ContentModel ‘s DS-COMPOSITE-MODEL datastream

class eulfedora.xml .FedoraDateField (xpath)

Map an XPath expression to a single Python datetime.datetime. Assumes date-time format in use by Fedora,
e.g. 2010-05-20T18:42:52.766Z

class eul fedora.xml .FedoraDateListField (xpath)

Map an XPath expression to a list of Python datetime.datetime. Assumes date-time format in use by Fedora, e.g.
2010-05-20T18:42:52.766Z. If the XPath expression evaluates to an empty NodeList, evaluates to an empty list.

class eulfedora.xml.FoxmlContentDigest (node=None, context=None, **kwargs)

Content digest, as stored in full foxml (e.g. object export)

digest = <eulxml.xmlmap.fields.StringField>
digest value

type = <eulxml.xmlmap.fields.StringField>
digest type, e.g. MD5

class eul fedora.xml .FoxmlDatastream (node=None, context=None, **kwargs)

Foxml datastream in full foxml, e.g. object export

id = <eulxml.xmlmap.fields.StringField>
datastream id

26

Chapter 1. Contents

http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject

EULfedora Documentation, Release 1.4.0

versions = <eulxml.xmlmap.fields.NodeListField>
list of versions

class eulfedora.xml.FoxmlDatastreamVersion (node=None, context=None, **kwargs)
Foxml datastream version in full foxml, e.g. object export

content_digest = <eulxml.xmlmap.fields.NodeListField>
content digest

id = <eulxml.xmlmap.fields.StringField>
datastream version id

mimetype = <eulxml.xmlmap.fields.StringField>
mimetype

class eulfedora.xml .FoxmlDigitalObject (node=None, context=None, **kwargs)
Minimal Xm10bject for Foxml DigitalObject as returned by REST_API.getObjectXML (), to provide
access to the Fedora audit trail.

audit_trail = <eulxml.xmlmap.fields.NodeField>
Fedora audit trail, as instance of AuditTrail

class eulfedora.xml .NewPids (node=None, context=None, **kwargs)
XmlObject for a list of pids as returned by REST_API.getNextPID ().

class eul fedora.xml .ObjectDatastream (node=None, context=None, **kwargs)
Xm1Object for a single datastream as returned by REST_API.listDatastreams ()

dsid = <eulxml.xmlmap.fields.StringField>
datastream id - @dsid

label = <eulxml.xmlmap.fields.StringField>
datastream label - @label

mimeType = <eulxml.xmlmap.fields.StringField>
datastream mime type - @ mimeType

class eulfedora.xml.ObjectDatastreams (node=None, context=None, **kwargs)
XmlObject for the list of a single object’s datastreams, as returned by REST_API.listDatastreams ()

datastreams = <eulxml.xmlmap.fields.NodeListField>
list of Ob jectDatastream

pid = <eulxml.xmlmap.fields.StringField>
object pid - @pid
class eulfedora.xml.ObjectHistory (node=None, context=None, **kwargs)
Xm1lObject for object history information returned by REST_API.getObjectHistory ().

class eul fedora.xml .ObjectMethodService (node=None, context=None, **kwargs)
XmlObject for object method services; included in ObjectMethods for data returned by
REST_API.listMethods ().

class eulfedora.xml.ObjectMethods (node=None, context=None, **kwargs)
XmlObject for object method information returned by REST_API.listMethods ().

class eul fedora.xml .ObjectProfile (node=None, context=None, **kwargs)
XmlObject for object profile information returned by REST_API.getObjectProfile ().

created = <eulfedora.xml.FedoraDateField>
date the object was created

1.3. eulfedora — Python objects to interact with the Fedora Commons repository 27

http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject

EULfedora Documentation, Release 1.4.0

label = <eulxml.xmlmap.fields.StringField>
object label

modified = <eulfedora.xml.FedoraDateField>
date the object was last modified

owner = <eulxml.xmlmap.fields.StringField>
object owner

state = <eulxml.xmlmap.fields.StringField>
object state (A/I/D - Active, Inactive, Deleted)

class eul fedora.xml .RepositoryDescription (node=None, context=None, **kwargs)

XmlObject for arepository description as returned by API_A_LITE.describeRepository ()

access_url = <eulxml.xmlmap.fields.StringField>
sample access url

admin_email = <eulxml.xmlmap.fields.StringListField>
administrator emails

base_url = <eulxml.xmlmap.fields.StringField>
base url

name = <eulxml.xmlmap.fields.StringField>
repository name

oai_info = <eulxml.xmlmap.fields.NodeField>
RepositoryDescriptionOAT - configuration info for OAI

oai_url = <eulxml.xmlmap.fields.StringField>
sample OAI url

pid_info = <eulxml.xmlmap.fields.NodeField>
RepositoryDescriptionPid - configuration info for pids

search_url = <eulxml.xmlmap.fields.StringField>
sample search url

version = <eulxml.xmlmap.fields.StringField>
version of Fedora being run

class eulfedora.xml.RepositoryDescriptionOAI (node=None, context=None, **kwargs)
Xml1Object for OAI section of RepositoryDescription

delimiter = <eulxml.xmlmap.fields.StringField>
OALI delimiter

namespace = <eulxml.xmlmap.fields.StringField>
OAI namespace

sample = <eulxml.xmlmap.fields.StringField>
sample OAI id

class eulfedora.xml .RepositoryDescriptionPid (node=None, context=None, **kwargs)
XmlOb ject for PID section of RepositoryDescription

delimiter = <eulxml.xmlmap.fields.StringField>
PID delimiter

namespace = <eulxml.xmlmap.fields.StringField>
PID namespace

28 Chapter 1

. Contents

http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject

EULfedora Documentation, Release 1.4.0

retain_pids = <eulxml.xmlmap.fields.StringField>
list of pid namespaces configured to be retained

sample = <eulxml.xmlmap.fields.StringField>
sample PID

class eul fedora.xml .SearchResult (node=None, context=None, **kwargs)
XmlObject for a single entry in the results returned by REST_API. findObjects ()

pid = <eulxml.xmlmap.fields.StringField>
pid
class eul fedora.xml .SearchResults (node=None, context=None, **kwargs)

XmlObject for the results returned by REST_API.findObjects ()

cursor = <eulxml.xmlmap.fields.IntegerField>
session cursor

expiration_date = <eulxml.xmlmap.fields.DateTimeField>
session experation date

results = <eulxml.xmlmap.fields.NodeListField>
search results - list of SearchResult

session_token = <eulxml.xmlmap.fields.StringField>
session token

1.3.3 Server objects
Repository
eulfedora.server.Repository has the capability to automatically use connection configuration parameters

pulled from Django settings, when available, but it can also be used without Django.

When you create an instance of Repository,if you do not specify connection parameters, it will attempt to initialize
the repository connection based on Django settings, using the configuration names documented below.

If you are writing unit tests that use eulfedora, you may want to take advantage of
eulfedora.testutil.FedoraTestSuiteRunner, which has logic to set up and switch configurations
between a development fedora repository and a test repository.

Projects that use this module should include the following settings in their settings.py:

Fedora Repository settings

FEDORA_ROOT = 'http://fedora.host.name:8080/fedora/"'
FEDORA_USER = 'user'

FEDORA_PASSWORD = 'password'

FEDORA_PIDSPACE = 'changeme'

FEDORA_TEST_ROOT = 'http://fedora.host.name:8180/fedora/"
FEDORA_TEST_PIDSPACE = 'testme'

If username and password are not specified, the Repository instance will be initialized without credentials and ac-
cess Fedora as an anonymous user. If pidspace is not specified, the Repository will use the default pidspace for the
configured Fedora instance.

Projects that need unit test setup and clean-up tasks (syncrepo and test object removal) to access Fedora with different
credentials than the configured Fedora credentials should use the following settings:

FEDORA_TEST_USER = 'testuser'
FEDORA_TEST_PASSWORD = 'testpassword'

1.3. eulfedora — Python objects to interact with the Fedora Commons repository 29

http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject
http://eulxml.readthedocs.org/en/latest/xmlmap.html#eulxml.xmlmap.XmlObject

EULfedora Documentation, Release 1.4.0

class eulfedora.server.Repository (root=None, username=None, password=None, request=None)
Pythonic interface to a single Fedora Commons repository instance.

best_subtype_for_ object (0bj, content_models=None)
Given a DigitalObject, examine the object to select the most appropriate subclass to instantiate. This
generic implementation examines the object’s content models and compares them against the defined sub-
classes of DigitalObject to pick the best match. Projects that have a more nuanced understanding of
their particular objects should override this method in a Repository subclass. This method is intended
primarily for use by infer._object_subtype ().

Parameters
* obj—aDigitalObject to inspect

* content_models — optional list of content models, if they are known ahead of time
(e.g., from a Solr search result), to avoid an additional Fedora look-up

Return type asubclass of DigitalObject

default_object_type
Default type to use for methods that return fedora objects - DigitalObject

aliasof DigitalObject

find_objects (terms=None, type=None, chunksize=None, **kwargs)
Find objects in Fedora. Find query should be generated via keyword args, based on the fields in Fe-
dora documentation. By default, the query uses a contains (~) search for all search terms. Calls
ApiFacade.findObjects (). Results seem to return consistently in ascending PID order.

Example usage - search for all objects where the owner contains ‘jdoe’:

repository.find_objects (ownerId="'7jdoe"')

Supports all search operators provided by Fedora findObjects query (exact, gt, gte, It, Ite, and contains).
To specify the type of query for a particular search term, call find_objects like this:

repository.find_objects (ownerId__exact='lskywalker')
repository.find_objects (date__gt="20010302")

Parameters
* type — type of objects to return; defaults to DigitalObject
* chunksize — number of objects to return at a time
Return type generator for list of objects
get_next_pid (namespace=None, count=None)

Request next available pid or pids from Fedora, optionally in a specified namespace. Calls
ApiFacade.getNextPID().

Deprecated since version 0.14: Mint pids for new objects with
eul fedora.models.DigitalObject.get_default_pid() instead, or call
ApiFacade.getNextPID () directly.

Parameters

* namespace — (optional) get the next pid in the specified pid namespace; otherwise, Fe-
dora will return the next pid in the configured default namespace.

* count — (optional) get the specified number of pids; by default, returns 1 pid

30 Chapter 1. Contents

EULfedora Documentation, Release 1.4.0

Return type string or list of strings

get_object (pid=None, type=None, create=None)
Initialize a single object from Fedora, or create a new one, with the same Fedora configuration and creden-
tials.

Parameters

* pid - pid of the object to request, or a function that can be called to get one. if not
specified, get_next_pid () will be called if a pid is needed

* type — type of object to return; defaults to DigitalObject
Return type single object of the type specified

Create boolean: create a new object? (if not specified, defaults to False when pid is specified,
and True when it is not)

get_objects_with_cmodel (cmodel_uri, type=None)
Find objects in Fedora with the specified content model.

Parameters
* cmodel_uri - content model URI (should be full URI in info:fedora/pid:### format)
* type — type of object to return (e.g., class:DigitalObject)

Return type list of objects

infer object_subtype (api, pid=None, create=False, default_pidspace=None)
Construct a DigitalObject or appropriate subclass, inferring the appropriate subtype using
best_subtype_for_object (). Note that this method signature has been selected to match the
DigitalObject constructor so that this method might be passed directly to get_object () as a
type:

>>> obj

repo.get_object (pid, type=repo.infer_object_subtype)

See also: TypeInferringRepository

ingest (text, log_message=None)
Ingest a new object into Fedora. Returns the pid of the new object on success. Calls
ApiFacade.ingest ().

Parameters
* text — full text content of the object to be ingested
* log_message — optional log message

Return type string

purge_object (pid, log_message=None)
Purge an object from Fedora. Calls ApiFacade.purgeObject ().

Parameters

* pid - pid of the object to be purged

* log_message — optional log message
Return type boolean

risearch
instance of eulfedora.api.Resourcelndex, with the same root url and credentials

search_fields = [’pid’, ‘label’, ‘state’, ‘ownerld’, ‘cDate’, ‘mDate’, ‘dcmDate’, ‘title’, ‘creator’, ‘subject’, ‘descriptior
fields that can be searched against in find_objects ()

1.3.

eulfedora — Python objects to interact with the Fedora Commons repository 31

http://docs.python.org/library/string.html#module-string

EULfedora Documentation, Release 1.4.0

search_fields_aliases = {‘owner’: ‘ownerld’, ‘dc_modified’: ‘dcmDate’, ‘modified’: ‘mDate’, ‘created’: ‘cDate’}
human-readable aliases for oddly-named fedora search fields

class eulfedora.server.TypeInferringRepository (root=None, username=None, pass-

word=None, request=None)
A simple Repository subclass whose default object type for get_object () is

infer _object_subtype (). Thus, each call to get_object () on a repository such as this will
automatically use best_subtype_for_object () (or a subclass override) to infer the object’s proper
type.

default_object_type (api, pid=None, create=False, default_pidspace=None)
Construct a DigitalObject or appropriate subclass, inferring the appropriate subtype using
best_subtype_for_object (). Note that this method signature has been selected to match the
DigitalObject constructor so that this method might be passed directly to get_object () as a
type:

>>> obj = repo.get_object (pid, type=repo.infer_object_subtype)

See also: TypeInferringRepository

Resource Index

class eulfedora.api.ResourceIndex (base_url, username=None, password=None)

Python object for accessing Fedora’s Resource Index.

RISEARCH_FLUSH_ON_QUERY = False

Specify whether or not RI search queries should specify flush=true to obtain the most recent results. If
flush is specified to the query method, that takes precedence.

Irrelevant if Fedora Rlsearch is configured with syncUpdates = True.

count_statements (query, language="spo’, type="triples’, flush=None)
Run a query in a format supported by the Fedora Resource Index (e.g., SPO or Sparql) and return the count
of the results.

Parameters

* query — query as a string

* language — query language to use; defaults to ‘spo’

e flush — flush results to get recent changes; defaults to False
Return type integer

find_statements (query, language="spo’, type="triples’, flush=None, limit=None)
Run a query in a format supported by the Fedora Resource Index (e.g., SPO or Sparql) and return the
results.

Parameters
* query — query as a string
* language — query language to use; defaults to ‘spo’
* type — type of query - tuples or triples; defaults to ‘triples’
» flush — flush results to get recent changes; defaults to False

Return type rdflib.ConjunctiveGraph when type is triples; list of dictionaries
(keys based on return fields) when type is tuples

32

Chapter 1. Contents

EULfedora Documentation, Release 1.4.0

get_objects (subject, predicate)
Search for all subjects related to the specified subject and predicate.

Parameters
* subject -
* object -
Return type generator of RDF statements

get_predicates (subject, object)
Search for all subjects related to the specified subject and object.

Parameters
* subject —
* object -
Return type generator of RDF statements

get_subjects (predicate, object)
Search for all subjects related to the specified predicate and object.

Parameters
* predicate -
* object —
Return type generator of RDF statements

sparql_count (query, flush=None)
Count results for a Sparql query.

Parameters query — sparql query string
Return type int

sparql_query (query, flush=None, limit=None)
Run a Sparql query.

Parameters query — sparql query string
Return type list of dictionary

spo_search (subject=None, predicate=None, object=None)
Create and run a subject-predicate-object (SPO) search. Any search terms that are not specified will be
replaced as a wildcard in the query.

Parameters
* subject - optional subject to search
* predicate - optional predicate to search
* object — optional object to search
Return type rdflib.ConjunctiveGraph

spoencode (val)
Encode search terms for an SPO query.

Parameters val — string to be encoded

Return type string

1.3. eulfedora — Python objects to interact with the Fedora Commons repository 33

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/string.html#module-string

EULfedora Documentation, Release 1.4.0

1.3.4 RDF Namespaces

Predefined RDF namespaces for convenience, for use with RdfDatastream objects, in
ResourceIndex queries, for defining a eulfedora.models.Relation, for adding relationships via
eul fedora.models.DigitalObject.add _relationship (), or anywhere else that Fedora-related
rdflib.term.URIRef objects might come in handy.

Example usage:

from eulfedora.models import DigitalObject, Relation
from eulfedora.rdfns import relsext as relsextns

class Item(DigitalObject):
collection = Relation(relsextns.isMemberOfCollection)

eulfedora.rdfns.model = rdf.namespace.ClosedNamespace(‘info:fedora/fedora-system:def/model#)
rdflib.namespace.ClosedNamespace for the Fedora model namespace (currently only includes
hasModel).

eulfedora.rdfns.oai = rdf.namespace.ClosedNamespace(‘http://www.openarchives.org/OAL/2.0/°)
rdflib.namespace.ClosedNamespace for the OAI relations commonly used with Fedora and the
PROAI OAI provider. Available URIs are: itemID, setSpec, and setName.

eulfedora.rdfns.relsext = rdf.namespace.ClosedNamespace(‘info:fedora/fedora-system:def/relations-external#’)
rdflib.namespace.ClosedNamespace for the Fedora external relations ontology.

1.3.5 Django integration
views Fedora views
indexdata Fedora Indexing
Management commands

The following management commands will be available when you include eulfedora in your django
INSTALLED_APPS and rely on the existdb settings described above.

For more details on these commands, use manage.py <command> help

* syncrepo - load simple content models and fixture object to the configured fedora repository

eulfedora Template tags

eul fedora adds custom template tags for use in templates.

fedora_access

Catch fedora failures and permission errors encountered during template rendering:

{% load fedora %}

{% fedora_access %}
<p>Try to access data on fedora objects which could be
inaccessible

34 Chapter 1. Contents

http://rdflib.readthedocs.org/en/latest/apidocs/rdflib.html#rdflib.term.URIRef
http://rdflib.readthedocs.org/en/latest/apidocs/rdflib.html#rdflib.namespace.ClosedNamespace
http://rdflib.readthedocs.org/en/latest/apidocs/rdflib.html#rdflib.namespace.ClosedNamespace
http://rdflib.readthedocs.org/en/latest/apidocs/rdflib.html#rdflib.namespace.ClosedNamespace
http://www.fedora.info/definitions/1/0/fedora-relsext-ontology.rdfs
http://docs.djangoproject.com/en/1.2/topics/templates/#custom-tag-and-filter-libraries

EULfedora Documentation, Release 1.4.0

or when fedora 1is
down.</p>
permission_denied %}
<p>Fall back to this content if the main body results in a permission
error while trying to access fedora data.</p>
fedora_failed %}
<p>Fall back to this content if the main body runs into another error
while trying to access fedora data.</p>
end_fedora_access %}

—~—
o\

—~—
o\

—~—
o\

The permission_denied and fedora_failed sections are optional. If only permission_denied is
present then non-permission errors will result in the entire block rendering empty. If only fedora_failed is
present then that section will be used for all errors whether permission-related or not. If neither is present then all
errors will result in the entire block rendering empty.

Note that when Django’s TEMPLATE_DEBUG setting is on, it precludes all error handling and displays the Django
exception screen for all errors, including fedora errors, even if you use this template tag. To disable this Django
internal functionality and see the effects of the fedora_access tag, add the following to your Django settings:

TEMPLATE_DEBUG = False

testutil Unittest utilities

1.4 Scripts

1.4.1 fedora-checksums

fedora-checksums is a command line utility script to validate or repair datastream checksums for content stored in a
Fedora Commons repository.

The script has two basic modes: validate and repair.

In validate mode, the script will iterate through all objects and validate the checksum for each datastream (or optionally
each version of any versioned datastream), reporting on invalid or missing checksums.

In repair mode, the script will iterate through all objects looking for datastreams with a checksum type of DISABLED
and a checksum value of none; any such datastreams will be updated in Fedora with a new checksum type (either
as specified via script argument ——checksum-type or using the Fedora configured default), prompting Fedora to
calculate and save a new checksum.

Running this script in either mode requires passing Fedora connection information and credentials, for example:

$ fedora-checksums validate —--fedora-root=http://localhost:8080/fedora/
—-—fedora-user=fedoraAdmin --fedora-password=fedoraAdmin

If you prefer not to specify your fedora password on the command line, specify the -——fedora-password option
with an empty value and you will be prompted:

$ fedora-checksums validate —--fedora-root=http://localhost:8080/fedora/
—-—fedora-user=fedoraAdmin --fedora-password=

Note: The fedora user you specify must have permission to find objects, access datastream profiles and history,
have permission to run the compareDatastreamChecksum API method (when validating), and permission to modify
datastreams (when repairing).

1.4. Scripts 35

EULfedora Documentation, Release 1.4.0

If you have specific objects you wish to check or repair, you can run the script with a list of pids. When validating,
there is also an option to output details to a CSV file for further investigation. For more details, see the script usage
for the appropriate mode:

$ fedora-checksums validate —--help
$ fedora-checksums repair —--help

Note: If the python package progressbar is available, progress will be displayed as objects are processed;
however, progressbar is not required to run this script.

1.4.2 validate-checksums

validate-checksums is a command line utility script intended for regularly, periodically checking that datastream
checksums are valid for content stored in a Fedora Commons repository.

When a fixity check is completed, the objects will be updated with a RELS-EXT property indicating the date of the
last fixity check, so that objects can be checked again after a specified period.

The default logic is to find and process all objects without any fixity check date in the RELS-EXT (prioritizing objects
with the oldest modification dates first, since these are likely to be most at risk), and then to find any objects whose
last fixity check was before a specified window (e.g., 30 days).

Because the script needs to run as a privileged fedora user (in order to access and make minor updates to all content),
if you are configuring it to run as a cron job or similar, it is recommended to use the options to generate a config file
and then load options from that config file when running under cron.

For example, to generate a config file:

validate-checksums --generate-config /path/to/config.txt --fedora-password=####4#

Any arguments passed via the command line will be set in the generated config file; you must pass the password so it
can be encrypted in the config file and decrypted for use.

To update a config file from an earlier version of the script:

validate-checksums --config /old/config.txt --generate-config /new/config.txt

This will preserve all settings in the old config file and generate a new config file with all new settings that are available
in the script.

To configure the script to send an email report when invalid or missing checksums are found or when there are any
errors saving objects, you can specify email addresses, a from email address, and an smtp server via the command line
or a config file.

1.5 Change & Version Information

The following is a summary of changes and improvements to eulfedora. New features in each version should be
listed, with any necessary information about installation or upgrade notes.

36 Chapter 1. Contents

EULfedora Documentation, Release 1.4.0

151 14
* New streaming option for eulfedora.views.RawDatastreamView
and eulfedora.views.raw_datastream() to optionally return a

django.http.StreamingHttpResponse (intended for use with large datastream content).

* New repo-cp script (BETA) for synchronizing content between Fedora repositories (e.g., production to QA or
development servers, for testing purposes).

1.5.2 1.3.1

* Require a version of python-requests earlier than 2.9 (2.9 includes change to upload behavior for file-like objects
that breaks eulfedora api uploads as currently handled in eulfedora).

153 1.3

e Tutorial updated to be compatible with Django 1.8 thanks to jaska @chfw.

* New class-based view eulfedora.views.RawDatastreamView, equivalent to
eulfedora.views.raw_datastream().

¢ Access to historical versions of datastreams now available in eul fedora.models.DigitalObject.getDatast reamOb
and eulfedora.views.raw_datastream().

154 1.2

* Change checksum handling to cue Fedora to auto-generate checksums on ingest.

* Recommended: Fedora 3.7+ for automatic checksum support on ingest

Note: This checksum change in this release is a work-around for a Fedora bug present in 3.8 (at least, possibly
3.7), where passing a checksum type with no checksum value results in in Fedora storing an empty checksum, where
previously it would calculate and store a checksum. On ingest, if a checksum type but no checksum value is specified,
no checksum information will be sent to Fedora (when checksum type and checksum value are both specified, they will
be passed through to Fedora normally). If you have auto-checksumming configured in Fedora, then your checksums
should be generated automatically. Note that auto- checksum functionality on ingest was broken until Fedora 3.7 (see
https://jira.duraspace.org/browse/FCREPO-1047); if you are still using an older version of Fedora and need checksums
generated at ingest, you should use eulfedora 1.1.

1.5.5 1.1

* ReverseRelation now includes an option for specifying a property to be used for sorting resulting items.
Can also be specified for reverse relations autogenerated by Relation.

* unittest?2 is now optional for testutils

e Use python json for eulfedora.indexdata.views instead of the simplejson that used to be included
with Django

* Support for Fedora 3.8.

e Update eulfedora.views.raw_datastream() to handle old Fedora datstreams with invalid content
size.

1.5. Change & Version Information 37

http://django.readthedocs.org/en/latest/ref/request-response.html#django.http.StreamingHttpResponse
https://github.com/chfw
https://jira.duraspace.org/browse/FCREPO-1047
http://docs.python.org/library/json.html#module-json

EULfedora Documentation, Release 1.4.0

Note: Differentiating Fedora error messages in some versions of Fedora (somewhere after 3.4.x, applicable to at least
3.7 and 3.8, possibly earlier versions) requires that Fedora be configured to include the error message in the response,
as described at https://groups.google.com/forum/#!topic/fedora-tech/PAvILY WPWOk

1.5.6 1.0

* API methods have been overhauled to use python-requests and requests-toolbelt

Note: API methods that previously returned a tuple of response content and the url now simply return the response
object, which provides access to both content and url (among other information). Server and DigitalObject classes
should behave as before, but API methods are not backward-compatible.

Warning: The API upload method filesize is limited by the system maxint (2GB on 32-bit OSes) due to a
limitation with the Python len() method (possibly dependent on your Python implementation). If you need large
file upload support on a 32-bit OS, you should use an earlier version of eulfedora.

* New script upload-test.py for testing upload behavior on your platform; also provides an example of an upload
callback method. (Found in the scripts directory, but not installed with the module.)

* bugfix: relationship methods on DigitalOb ject now recognize unicode as well as string pids as resources.

1.5.7 0.23

* Related objects accessed via Relation are now cached for efficiency, similar to the way datastreams are
cachedon DigitalObject.

e Methods purge_relationship () and modify relationship () addedto DigitalObject. Con-
tributed by Graham Hukill @ ghukill.

1.5.8 0.22.2

* bugfix: correction in detailed output for validate-checksum script when all versions are checked and at least one
checksum is invalid

1.5.9 0.22.1

* bugfix: support HTTP Range requests in eulfedora.views.raw_datastream() only when explicitly
enabled

1.5.10 0.22

* A repository administrator can configure a script to periodically check content checksums in order to identify
integrity issues so that they can be dealt with.

* A repository administrator will receive an email notification if the system encounters bad or missing checksums
so that they can then resolve any integrity issues.

* A repository admin can view fixity check results for individual objects in the premis data stream (for objects
where premis exists) in order to view a more detailed result and the history.

38 Chapter 1. Contents

https://groups.google.com/forum/#!topic/fedora-tech/PAv1LYWPW0k
http://python-requests.org
http://toolbelt.readthedocs.org
http://bugs.python.org/issue12159
https://github.com/ghukill

EULfedora Documentation, Release 1.4.0

* Support for basic HTTP Range requests in eulfedora.views.raw_datastream() (e.g., to allow au-
dio/video seek in HTMLS media players)

1.5.11 0.21

* Itis now possible to add new datastreams using eul fedora.models.DigitalObject.getDatastreamOb ject ()
(in contrast to predefined datastreams on a subclass of DigitalObject). Adding new datastreams is sup-
ported when ingesting a new object as well as when saving an existing object. This method can also be used to
update existing datastreams that are not predefined on a DigitalObject subclass.

1.5.12 0.20

* Development requirements can now be installed as an optional requirement of the eulfedora package (pip
install "eulfedoral[dev]").

* Unit tests have been updated to use nose

* Provides a nose plugin to set up and tear down for a test Fedora Commons repository instance for tests, as an
alternative to the custom test runners.

1.5.13 0.19.2

* Bugfix: don’t auto-create an XML datastream at ingest when the xml content is empty (i.e., content consists of
bootstrapped xmlmap .XmlObject only)

1.5.14 0.19.1

* Bugfix: handle Fedora restriction of ownerld field length to 64 characters. When setting owner, will now warn
and truncate the value to allow the object to be saved.

1.5.15 0.19.0

* New command-line script fedora-checksums for datastream checksums validation and repair. See Scripts
for more details.

* DigitalObject now provides access to the Fedora built-in audit trail; see audit_trail. Also provides:

— eulfedora.views.raw_audit_trail (): Django view to serve out audit trail XML, comparable
toeulfedora.views.raw_datastream().

— DigitalObject attribute audit_trail users: set of all usernames listed in the audit trail (i.e.,
any users who have modified the object)

— DigitalObject attribute ingest_user: username responsible for ingesting the object into Fedora
if ingest is listed in the audit trail

* Relation now supports recursive relations via the option type="self".

» API wrappers have been updated to take advantage of all methods available in the REST API as of Fedora
3.4 which were unavailable in 3.2. This removes the need for any SOAP-based APIs and the dependency on
soaplib.

* Minor API / unit test updates to support Fedora 3.5 in addition to 3.4.x.

1.5. Change & Version Information 39

EULfedora Documentation, Release 1.4.0

1.5.16 0.18.1

* Bugfix: Default checksum type for DatastreamOb ject was previously ignored when creating a new datas-
tream from scratch (e.g., when ingesting a new object). In certain versions of Fedora, this could result in
datastreams with missing checksums (checksum type of ‘DISABLED’, checksum value of ‘none’).

1.5.17 0.18.0

* Exposed RIsearch count return option via eul fedora. api.ResourceIndex.count_statements ()

* DatastreamOb ject now supports setting datastream content by URI through the new ds_location at-
tribute (this is in addition to the previously-available content attribute).

1.5.18 0.17.0

* Previously, several of the REST API calls in eul fedora.api.REST_API suppressed errors and only re-
turned True or False for success or failure; this made it difficult to determine what went wrong when an API call
fails. This version of eul fedora revises that logic so that all methods in eulfedora.api.REST_API
will raise exceptions when an exception-worthy error occurs (e.g., permission denied, object not found, etc. -
anything that returns a 40x or 500 HTTP error response from Fedora). The affected REST methods are:

— addDatastream()

— modifyDatastream/()

— purgeDatastream()

— modifyObject ()

- purgeObject ()

— setDatastreamState ()

— setDatastreamVersionable ()

e New custom Exception eulfedora.util.ChecksumMismatch, which is a subclass of
eulfedora.util.RequestFailed. This exception will be raised if addDatastream() or
modifyDatastream () is called with a checksum value that Fedora determines to be invalid.

Note: If addDatastream() is called with a checksum value but no checksum type, current versions of
Fedora ignore the checksum value entirely; in particular, an invalid checksum with no type does not result in a
ChecksumMismatch exception being raised. You should see a warning if your code attempts to do this.

e Added read-only access to DigitalObject owners as a list; changed default
eulfedora.models.DigitalObject.index _data () to make owner field a list.

* Modified default eul fedora.models.DigitalObject.index_data () and sample Solr schema to
include a new field (dsids) with a list of datastream IDs available on the indexed object.

1.5.19 0.16.0 - Indexing Support

e Addition of eul fedora.indexdata to act as a generic webservice that can be used for the creation and
updating of indexes such as SOLR; intended to be used with eulindexer.

40 Chapter 1. Contents

EULfedora Documentation, Release 1.4.0

1.5.20 0.15.0 - Initial Release

* Split out fedora-specific components from eulcore; now depends on eulxml.

1.6 EULFedora

EULfedora is a Python module that provides utilities, API wrappers, and classes for interacting with the Fedora-
Commons Repository in a pythonic, object-oriented way, with optional Django integration. Current versions of eulfe-
dora are intended for use with Fedora Commons 3.7.x or 3.8.x, but will likely work with earlier versions. If you need
support for an earlier version of Fedora and the latest eulfedora does not work, you may have success with the 1.0
release.

eulfedora.api provides complete access to the Fedora API, primarily making use of Fedora’s REST API. This low-
level interface is wrapped by eulfedora.server.Repository and eulfedora.models.DigitalObject, which provide a
more abstract, object-oriented, and Pythonic way of interacting with a Fedora Repository or with individual objects
and datastreams.

eulfedora.indexdata provides a webservice that returns data for fedora objects in JSON form, which can be used in
conjunction with a service for updating an index, such as eulindexer.

When used with Django, eulfedora can pull the Repository connection configuration from Django settings, and pro-
vides a custom management command for loading simple content models and fixture objects to the configured reposi-
tory.

1.6.1 Dependencies

eulfedora currently depends on eulxml, rdflib, python-dateutil, pycrypto, soaplib.

eulfedora can be used without Django, but additional functionality is available when used with Django.

1.6.2 Contact Information

eulfedora was created by the Digital Programs and Systems Software Team of Emory University Libraries.

libsysdev-1@]listserv.cc.emory.edu

1.6.3 License

eulfedora is distributed under the Apache 2.0 License.

1.6.4 Development History

For instructions on how to see and interact with the full development history of eulfedora, see eulcore-history.

1.6.5 Developer Notes

To install dependencies for your local check out of the code, run pip install in the eulfedora directory (the
use of virtualenv is recommended):

‘pip install -e .

1.6. EULFedora 41

http://www.python.org/
http://fedora-commons.org/
http://fedora-commons.org/
https://www.djangoproject.com/
https://wiki.duraspace.org/display/FCR30/REST+API
https://www.djangoproject.com/
https://github.com/emory-libraries/eulxml
http://www.rdflib.net/
http://labix.org/python-dateutil
https://www.dlitz.net/software/pycrypto/
http://pypi.python.org/pypi/soaplib/0.8.1
https://www.djangoproject.com/
http://web.library.emory.edu/
mailto:libsysdev-l@listserv.cc.emory.edu
https://github.com/emory-libraries/eulcore-history
http://www.virtualenv.org/en/latest/

EULfedora Documentation, Release 1.4.0

If you want to run unit tests or build sphinx documentation, you will also need to install development dependencies:

pip install -e . "eulfedoral[dev]"

Running the unit tests requires a Fedora Commons repository instance. Before running tests, you will need to
copy test/localsettings.py.dist to test/localsettings.py and edit the configuration for your

test repository.

To run all unit tests:

nosetests test # for normal development

nosetests test --with-coverage --cover-package=eulfedora --cover-xml —--with-xunit # fqg

To run unit tests for a specific module or class, use syntax like this:

nosetests test.test_fedora.test_api
nosetests test.test_fedora:TestDigitalObject

To generate sphinx documentation:

cd doc
make html

42

Chapter 1. Contents

r continuous

CHAPTER 2

Indices and tables

¢ genindex
* modindex

e search

43

EULfedora Documentation, Release 1.4.0

44

Chapter 2. Indices and tables

Python Module Index

e

eulfedora, 15

[

eulfedora.indexdata, 34

m

eulfedora.models, 15

r
eulfedora.rdfns, 34

S

eulfedora.server, 29
scripts, 35

t

eulfedora.templatetags, 34

X

eulfedora.xml, 25

45

EULfedora Documentation, Release 1.4.0

46

Python Module Index

Index

A

access_url (eulfedora.xml.RepositoryDescription at-
tribute), 28

action (eulfedora.xml.AuditTrailRecord attribute), 25

add_relationship() (eulfedora.models.DigitalObject

method), 15

admin_email (eulfedora.xml.RepositoryDescription at-
tribute), 28

as_of_date (eulfedora.models.DatastreamObject at-

tribute), 21

audit_trail (eulfedora.models.DigitalObject attribute), 16

audit_trail (eulfedora.xml.FoxmlDigitalObject attribute),
27

audit_trail_users (eulfedora.models.DigitalObject at-
tribute), 16

AuditTrail (class in eulfedora.xml), 25

AuditTrailRecord (class in eulfedora.xml), 25

B

base_url (eulfedora.xml.RepositoryDescription attribute),
28

best_subtype_for_object()
method), 30

(eulfedora.server.Repository

C

checksum (eulfedora.xml.DatastreamProfile attribute), 25
checksum_type (eulfedora.xml.DatastreamProfile at-
tribute), 26
checksum_valid
attribute), 26
component (eulfedora.xml.AuditTrailRecord attribute),

(eulfedora.xml.DatastreamProfile

25

content (eulfedora.models.DatastreamObject attribute),
21

content (eulfedora.models.FileDatastreamObject at-
tribute), 23

content_digest (eulfedora.xml.FoxmlDatastreamVersion
attribute), 27

control_group (eulfedora.xml.DatastreamProfile at-
tribute), 26

count_statements()
method), 32
created (eulfedora.xml.DatastreamProfile attribute), 26
created (eulfedora.xml.ObjectProfile attribute), 27
cursor (eulfedora.xml.SearchResults attribute), 29

D

Datastream (class in eulfedora.models), 20

DatastreamHistory (class in eulfedora.xml), 25

DatastreamObject (class in eulfedora.models), 21

DatastreamProfile (class in eulfedora.xml), 25

datastreams (eulfedora.xml.ObjectDatastreams attribute),
27

date (eulfedora.xml.AuditTrailRecord attribute), 25

dc (eulfedora.models.DigitalObject attribute), 16

default_object_type (eulfedora.server.Repository at-
tribute), 30

default_object_type() (eulfe-
dora.server. TypelnferringRepository method),
32

default_pidspace (eulfedora.models.DigitalObject at-
tribute), 16

delimiter (eulfedora.xml.RepositoryDescriptionOAI at-
tribute), 28

delimiter (eulfedora.xml.RepositoryDescriptionPid at-
tribute), 28

digest (eulfedora.xml.FoxmlContentDigest attribute), 26

DigitalObject (class in eulfedora.models), 15

DigitalObjectSaveFailure (class in eulfedora.models), 19

ds_list (eulfedora.models.DigitalObject attribute), 16

ds_location (eulfedora.models.DatastreamObject at-
tribute), 21

DsCompositeModel (class in eulfedora.xml), 26

dsid (eulfedora.xml.DatastreamHistory attribute), 25

dsid (eulfedora.xml.ObjectDatastream attribute), 27

E

eulfedora (module), 15
eulfedora.indexdata (module), 34
eulfedora.models (module), 15

(eulfedora.api.Resourcelndex

47

EULfedora Documentation, Release 1.4.0

eulfedora.rdfns (module), 34

eulfedora.server (module), 29

eulfedora.templatetags (module), 34

eulfedora.xml (module), 25

exists (eulfedora.models.DigitalObject attribute), 16

expiration_date (eulfedora.xml.SearchResults attribute),
29

F

FedoraDateField (class in eulfedora.xml), 26
FedoraDateListField (class in eulfedora.xml), 26
FileDatastream (class in eulfedora.models), 20
FileDatastreamObject (class in eulfedora.models), 22
find_objects() (eulfedora.server.Repository method), 30
find_statements() (eulfedora.api.Resourcelndex method),
32
format (eulfedora.xml.DatastreamProfile attribute), 26
FoxmlContentDigest (class in eulfedora.xml), 26
FoxmlDatastream (class in eulfedora.xml), 26
FoxmlDatastream Version (class in eulfedora.xml), 27
FoxmlDigitalObject (class in eulfedora.xml), 27

G

get_chunked_content() (eulfe-
dora.models.DatastreamObject method),
21

get_default_pid() (eulfedora.models.DigitalObject
method), 17

get_models() (eulfedora.models.DigitalObject method),
17

get_next_pid() (eulfedora.server.Repository method), 30

get_object() (eulfedora.models.DigitalObject method), 17

get_object() (eulfedora.server.Repository method), 31

get_objects() (eulfedora.api.Resourcelndex method), 32

get_objects_with_cmodel() (eulfedora.server.Repository
method), 31

get_predicates() (eulfedora.api.Resourcelndex method),
33

get_subjects() (eulfedora.api.Resourcelndex method), 33

getDatastreamObject() (eulfedora.models.DigitalObject
method), 16

getDatastreamProfile() (eulfedora.models.DigitalObject
method), 16

getProfile() (eulfedora.models.DigitalObject method), 17

H

has_model() (eulfedora.models.DigitalObject method),
17

has_requisite_content_models
dora.models.DigitalObject attribute), 17

history() (eulfedora.models.DatastreamObject method),
21

(eulfe-

id (eulfedora.xml.AuditTrailRecord attribute), 25

id (eulfedora.xml.FoxmlDatastream attribute), 26

id (eulfedora.xml.FoxmlDatastreamVersion attribute), 27

index_data() (eulfedora.models.DigitalObject method),
17

index_data_descriptive()
dora.models.DigitalObject method), 17

index_data_relations() (eulfedora.models.DigitalObject
method), 17

infer_object_subtype()
method), 31

ingest() (eulfedora.server.Repository method), 31

ingest_user (eulfedora.models.DigitalObject attribute), 17

isModified() (eulfedora.models.DatastreamObject
method), 21

(eulfe-

(eulfedora.server.Repository

L

label (eulfedora.models.DatastreamObject attribute), 22

label (eulfedora.models.DigitalObject attribute), 18

label (eulfedora.xml.DatastreamProfile attribute), 26

label (eulfedora.xml.ObjectDatastream attribute), 27

label (eulfedora.xml.ObjectProfile attribute), 27

label_max_size (eulfedora.models.DigitalObject at-
tribute), 18

M

message (eulfedora.xml.AuditTrailRecord attribute), 25

mimetype (eulfedora.models.DatastreamObject at-
tribute), 22

mimetype (eulfedora.xml.DatastreamProfile attribute), 26

mimetype (eulfedora.xml.FoxmlDatastreamVersion at-
tribute), 27

mimeType (eulfedora.xml.ObjectDatastream attribute),
27

model (in module eulfedora.rdfns), 34

modified (eulfedora.xml.ObjectProfile attribute), 28

modify_relationship() (eulfedora.models.DigitalObject
method), 18

N

name (eulfedora.xml.RepositoryDescription attribute), 28

namespace (eulfedora.xml.RepositoryDescriptionOAI at-
tribute), 28

namespace (eulfedora.xml.RepositoryDescriptionPid at-
tribute), 28

NewPids (class in eulfedora.xml), 27

O

oai (in module eulfedora.rdfns), 34

oai_info (eulfedora.xml.RepositoryDescription attribute),
28

oai_url (eulfedora.xml.RepositoryDescription attribute),
28

48

Index

EULfedora Documentation, Release 1.4.0

object_xml (eulfedora.models.DigitalObject attribute), 18
ObjectDatastream (class in eulfedora.xml), 27
ObjectDatastreams (class in eulfedora.xml), 27
ObjectHistory (class in eulfedora.xml), 27
ObjectMethods (class in eulfedora.xml), 27
ObjectMethodService (class in eulfedora.xml), 27
ObjectProfile (class in eulfedora.xml), 27
owner (eulfedora.models.DigitalObject attribute), 18
owner (eulfedora.xml.ObjectProfile attribute), 28
OWNER_ID_SEPARATOR
dora.models.DigitalObject attribute), 15
owner_max_size (eulfedora.models.DigitalObject at-
tribute), 18
owners (eulfedora.models.DigitalObject attribute), 18

P

pid (eulfedora.xml.DatastreamHistory attribute), 25

pid (eulfedora.xml.ObjectDatastreams attribute), 27

pid (eulfedora.xml.SearchResult attribute), 29

pid_info (eulfedora.xml.RepositoryDescription attribute),
28

pidspace (eulfedora.models.DigitalObject attribute), 18

process_type (eulfedora.xml.AuditTrailRecord attribute),
25

purge_object() (eulfedora.server.Repository method), 31

purge_relationship() (eulfedora.models.DigitalObject
method), 18

(eulfe-

R

RdfDatastream (class in eulfedora.models), 20

RdfDatastreamObject (class in eulfedora.models), 22

records (eulfedora.xml.AuditTrail attribute), 25

Relation (class in eulfedora.models), 23

rels_ext (eulfedora.models.DigitalObject attribute), 19

relsext (in module eulfedora.rdfns), 34

replace_uri() (eulfedora.models.RdfDatastreamObject
method), 22

Repository (class in eulfedora.server), 30

RepositoryDescription (class in eulfedora.xml), 28

RepositoryDescriptionOAI (class in eulfedora.xml), 28

RepositoryDescriptionPid (class in eulfedora.xml), 28

Resourcelndex (class in eulfedora.api), 32

results (eulfedora.xml.SearchResults attribute), 29

retain_pids (eulfedora.xml.RepositoryDescriptionPid at-
tribute), 28

ReverseRelation (class in eulfedora.models), 24

risearch (eulfedora.models.DigitalObject attribute), 19

risearch (eulfedora.server.Repository attribute), 31

RISEARCH_FLUSH_ON_QUERY
dora.api.Resourcelndex attribute), 32

(eulfe-

S

sample (eulfedora.xml.RepositoryDescriptionOAI at-

tribute), 28

sample (eulfedora.xml.RepositoryDescriptionPid at-

tribute), 29

save() (eulfedora.models.DatastreamObject method), 22

save() (eulfedora.models.DigitalObject method), 19

scripts (module), 35

search_fields (eulfedora.server.Repository attribute), 31

search_fields_aliases (eulfedora.server.Repository at-
tribute), 32

search_url (eulfedora.xml.RepositoryDescription at-
tribute), 28

SearchResult (class in eulfedora.xml), 29

SearchResults (class in eulfedora.xml), 29

session_token (eulfedora.xml.SearchResults attribute), 29

size (eulfedora.models.DatastreamObject attribute), 22

size (eulfedora.xml.DatastreamProfile attribute), 26

sparql_count() (eulfedora.api.Resourcelndex method), 33

sparql_query() (eulfedora.api.Resourcelndex method), 33

spo_search() (eulfedora.api.Resourcelndex method), 33

spoencode() (eulfedora.api.Resourcelndex method), 33

state (eulfedora.models.DatastreamObject attribute), 22

state (eulfedora.models.DigitalObject attribute), 19

state (eulfedora.xml.DatastreamProfile attribute), 26

state (eulfedora.xml.ObjectProfile attribute), 28

T

type (eulfedora.xml.FoxmlContentDigest attribute), 26
TypelnferringRepository (class in eulfedora.server), 32

U

undo_last_save() (eulfedora.models.DatastreamObject
method), 22

uri (eulfedora.models.DigitalObject attribute), 19

uriref (eulfedora.models.DigitalObject attribute), 19

user (eulfedora.xml.AuditTrailRecord attribute), 25

V

validate_checksum() (eulfe-
dora.models.DatastreamObject method),
22

version (eulfedora.xml.RepositoryDescription attribute),
28

version_id (eulfedora.xml.DatastreamProfile attribute),
26

versionable (eulfedora.models.DatastreamObject at-

tribute), 22
versionable (eulfedora.xml.DatastreamProfile attribute),
26
versions (eulfedora.xml.DatastreamHistory attribute), 25
versions (eulfedora.xml.FoxmlDatastream attribute), 26

X

XmlDatastream (class in eulfedora.models), 20
XmlDatastreamObject (class in eulfedora.models), 22

Index

49

	Contents
	Creating a simple Django app for Fedora Commons repository content
	Example Uses
	eulfedora – Python objects to interact with the Fedora Commons repository
	Scripts
	Change & Version Information
	EULFedora

	Indices and tables
	Python Module Index

